\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit! On the actual exam the last page will have a list of matrices and their row reduced echelon or row echelon forms that you may or may not need.

1. Compute the eigenvalues and eigenvectors of A if

$$
A=\left(\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right)
$$

2. Compute the eigenvalues and eigenvectors of A if

$$
A=\left(\begin{array}{cc}
3 & 1 \\
-2 & 5
\end{array}\right)
$$

3. Let P be a square matrix with the property that $P^{2}=P$. What are the possible eigenvalues of P ? Be sure to justify.
4. Show that if A^{2} is the zero matrix, then the only possible eigenvalue is 0 .
5. Let λ be an eigenvalue for a square matrix A. Show that λ^{k} is an eigenvalue for A^{k} for some natural number k.
6. Suppose a square matrix A has 0 as an eigenvalue. Show that A cannot be invertible.
7. Use the Gram-Schmidt process to find an orthonormal basis for $S=\left\{1, t, t^{2}\right\}$ the standard basis for P_{2} with the following inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

8. Use the Gram-Schmidt process to find an orthonormal basis for $S=\{1, t\}$ the standard basis for P_{1} with the following inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

9. Let P be a $n \times n$ matrix whose columns are orthonormal. For $\mathbf{x} \in \mathbb{R}^{n}$, show that $\|P \mathbf{x}\|=\|\mathbf{x}\|$. (HINT: If the columns of P are orthonormal than what is $P^{t} P$ equal to?)
10. Let P be a $n \times n$ matrix whose columns are orthonormal. Show $\langle P x, P y\rangle=0$ if and only if $\langle x, y\rangle=0$. Here $\left\langle v_{1}, v_{2}\right\rangle$ is the dot product in \mathbb{R}^{n}
11. Let A be a square matrix with real entries such that $A=A^{t}$. Show that if λ is an eigenvalue of A, then λ must be real, that is $\lambda=\bar{\lambda}$. (HINT: Consider $\langle A v, v\rangle$, here $\left\langle u_{1}, u_{2}\right\rangle$ is just the usual dot product in \mathbb{R}^{n}.)
12. Let A be a square matrix with real entries such that $A=A^{t}$. Show that if $\lambda_{1} \neq \lambda_{2}$ are eigenvalues, then the corresponding eigenvectors v_{1} and v_{2} must be orthogonal. (HINT: use the hint from the previous problem.)
